

AN INTRODUCTION TO SPACE INFLATABLE/RIGIDIZABLE STRUCTURES TECHNOLOGYAT JPL

Michael C. Lou

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA.

WHAT ARE SPACE INFLATABLE STRUCTURES?

- Large space structures that are deployed by pressurization. (Others are mechanically deployed or erected/assembled in space)
- A space inflatable structure, in general, is made of one or more long tubular elements (called booms or tubes).
- These tubular elements are highly flexible when not being pressurized such that they can be stowed in a very small volume for launch.
- The stowed tubular elements are deployed in space by gas pressurization to achieve their designed configurations.
- Applications of space inflatable structures include radar antennas, sunshades, solar arrays, telescope reflectors, solar sails, and solar concentrators.

WHY USE SPACE INFLATABLE STRUCTURES?

- Launch cost is a major part of the life cycle cost of a space flight mission.
- Payload mass and volume are important drivers of launch cost.
- Space inflatable (inflation deployable) structures technology offers order-of-magnitude mass and volume reductions for future space flight systems.
- Additional advantages of a space inflatable structure over its mechanically deployed counterpart include:
 - Design simplicity (10's of parts vs. 100's of parts)
 - Lower development cost
 - Higher deployment reliability

TWO EXAMPLE APPLICATIONS OF SPACE INFLATABLE STRUCTURES

(1) Inflatable Sunshield for the Next Generation Space Telescope (NGST)

(2) Inflatable Synthetic-Aperture Radar (SAR) Array Antenna

NGST REFERENCE ARCHITECTURE

NGST INFLATABLE SUNSHIELD

- Next Generation Space Telescope (NGST) is scheduled to be launched in 2007 as a replacement of Hubble Space Telescope (HST).
- NGST requires a 32.8 m x 14.2 m sunshield to passively cool the near IR telescope to an operating temperature of < 60 K.
- Requirements of NGST sunshield include:
 - Ultra lightweight
 - High packaging efficiency
 - High deployment reliability
 - 5 -10 years of mission life at L2
- A sunshield consisting of inflatable structures and multiple layers of thin thermal films is considered.

NGST INFLATABLE SUNSHIELD (Cont'd)

- An inflatable NGST sunshield has many advantages over its mechanically deployed counterpart:
 - 20 30% lighter
 - 60 80% smaller launch volume
 - Less complicated 10's of parts vs. 100's
 - Cheaper \$5-M vs. \$10+M
- A major concern is controllability of inflation deployment.
- A 1/2-scale engineering model was developed to test-verify controlled deployment and rigidization.
- NASA is currently preparing for an inflatable sunshield space experiment (Inflatable Sunshield In Space or ISIS) Scheduled to be launched in the Space Shuttle in 2001.

ARTP INFLATABLE SAR

- Synthetic-Aperture Radar (SAR) missions are needed to monitor environmental conditions and resources of planet Earth Antenna is too big and too heavy.
- JPL was tasked by NASA to develop an advanced ultra-lightweight SAR array antenna with specific RF requirements:
 - 10 m x 3 m aperture
 - L-Band (1.25 GHz operating frequency)
 - 80 MHz bandwidth
 - Dual polarization
- Radar array is formed by three parallel RF membrane layers:
 - Top layer is the radiating plane
 - Middle layer is the ground plane
 - Bottom layer is the micro-strip transmission line plane.

ARTP INFLATABLE SAR (Cont'd)

- Mechanical Requirements:
 - Lightweight (less than 3 kg/m² of system mass)
 - Small launch volume (targeted for small L/V such as Taurus or Athena)
 - Planarity and uniform separations for the three RF membrane layers
 - Flatness to be +/- 1 cm
 - Separation between the top and the middle layers to be 1.26 +/- 0.7 cm
 - \bullet Separation between the middle and the bottom layers to be 0.63 +/- 0.5 cm
- RF-functional 1/3-scale engineering models have been built by ILC Dover and L'Garde. The L'Garde model features an inflatable frame with stretched aluminum laminate booms.
- As a precursor to the inflatable SAR flight experiment (ISAR), a full-scale, single-wing engineering model is being developed at JPL for deployment and vibration tests.

ARTP INFLATABLE SAR

INFLATABLE SAR ARRAY ANTENNA RF TEST RESULTS

TECHNICAL CHALLENGES

- Space applications of inflatable structures were studied in the 1960s. (e.g., NASA's ECHO missions)
- In May 1996, the Inflatable Antenna Experiment (IAE) mission was flown on a Spartan free flyer launched by the Space Shuttle.
- The IAE has generated much interest in space inflatable structures and systems. Post-flight reviews indicated that many technical challenges remain to be addressed. The major ones are:
 - Deployment Control
 - Space Rigidization
 - Modeling and Analysis Tools
 - Materials Characterization and Long-Term Space Survivability

Long-Range

Technology Development Roadmaps

Large Lightweight Space Structures Low-Precision Applications

Structures for Extreme Space Environments

Inflatable Structures

- Simple inflatable structures
- Off-the-shelf materials
- Specialized design and analysis tools
- Scaling laws and ground test methods
- **Experimental rigidization**

Enables simple structures of up to about 50 m

- Space Demo and Tech Validation
- · ST-5, ISIS, ISAE

- Space Rigidization & Survivability
- Long-term (> 3 years) space survivability
- Space-durable materials and thin-films
- Space-validated rigidization
- Space-validated analysis and performance simulation capabilities
- 10 g/m² solar sails

Enables 100-m planar structural systems and 200-m solar sails

- GeoStorm Warning
- NGST Sunshade
- · Lightweight, Low-Cost SAR Missions
- S/A and S/S for ESS Missions

Survivability in extreme space

Adaptive structures

environments

- ≤ 1µ-thick thin films
- $\leq 5 \text{ g/m}^2 \text{ solar sails}$

In-orbit configuration change and expansion

- Self-monitoring and selfreparable
- Space-based fabrication & assembly

Enables adaptive and expandable space structural systems

- Interstellar Missions
- Evolving Space Colonies

Enables smart structural systems and 800-m solar sails

- **Outer Planet Missions**
- · Interstellar Missions

Large Lightweight Space Structures Hi-Precision Apertures

 D/ϵ of up to 10^8

- adjustment

Enables large apertures with

TPF

- Exo-Planet Imaging

 D/ϵ of up to 10^4

- Inflatable torus and thin-film lenticular
- Deployable FRP truss and wire mesh dish
- Improved fabrication and assembly
- Hi-efficiency packaging concepts

Enables reflectors & concentrators with D \leq 20 m and ϵ = mm's

- **RF** Reflectors
- · Technology Validation in Space

D/ε of up to 105

- Long-term space survivability
- Space rigidizable structures
- Thin-film lenticular or hybrid reflective surface
- μm-level fabrication, assembly and ground measurements
- Space-validated analysis capabilities

Enables reflectors & concentrators with D \leq 40 m and sub-mm ϵ

- ARISE
- **Space Solar Power**
- Solar Propulsion

- · Adaptive thin-film optics
- In-space aperture precision
- Sub-µm fabrication, assembly and ground testing
- Flat membrane mirrors

 $D \le 100 \text{ m}$ and $\epsilon = \mu \text{m's}$

- Optical Communication
- Earth Science Event Monitors
- Exo-Planet Spectroscopy

Die ratio of up to 101

- Break-through system concepts
- Breakthrough materials, fabrication, and test methodologies
- Multi-stage active wavefront correction

Enables large apertures with $D \le 1000 \text{ m}$ and sub- $\mu m \epsilon$

· Deep-Field Imaging **Observatories**

D: Aperture Diameter

ε: RMS Surface Error